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Abstract. We investigate structures recognizable by finite state au-

tomata with an input tape of length a limit ordinal. At limits, the set

of states which appear unboundedly often before the limit are mapped

to a limit state. We describe a method for proving nonautomaticity and

determine the optimal bounds for ranks of linear orders recognized by

such automata.
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1 Introduction

Let us consider a class of structures such as linear orders, partial orders,

or graphs. The structures with a simple algorithmic presentation often

have simpler algorithmic and structural properties than arbitrary struc-

tures. For example, every ordinal recognized by finite automata is below

ωω [5] and every linear order recognized by finite automata has finite

Cantor-Bendixson rank [7]. In this paper, we compute similar bounds for
? Work is supported in part by NUS grant R252-000-420-112.



the ranks of linear orders recognized by automata with an input tape of

length a limit ordinal. Büchi [2], Choueka [4], Wojciechowski [11], and

Bruyere-Carton [1], for instance, studied various types of automata in-

dexed by ordinals. Let us briefly describe the type of automaton studied

here. Consider a finite state automaton which has read all letters with

finite index in an ordinal-indexed input word. To extend the run of the

automaton to the infinite ordinals, we need to determine the limit state

depending on the sequence of the previous states.

Definition 1. Suppose Σ,Ξ are finite alphabets. An ordinal automaton

consists of

– a finite set S of states,

– an initial state,

– a set of accepting states,

– a successor transition function S × (Σ ∪ {�})× (Ξ ∪ {�})→ S, and

– a limit transition function P(S)→ S.

The input of an ordinal automaton is a word w : γ → Σ ∪ {�} of length

some limit ordinal |w| = γ. The input words for a given automaton

will always have a fixed length γ and in this case we will speak of a

γ-automaton. In addition, the automaton may process a parameter (or

oracle) p : γ → Ξ ∪ {�}, where p = �γ if no parameter is specified. The

automaton successively reads the letters of the input word and (simul-

taneously) the oracle. At any time α, the next state is determined via

the successor transition function by the current state, the input letter in

place α, and the oracle in place α. At any limit λ ≤ γ, the state at λ is

determined via the limit transition function by the set of states appear-

ing unboundedly often before λ. The input is accepted if the state at γ



is accepting and rejected otherwise. Thus the limit rule resembles that of

a Muller automaton rather than a Büchi automaton. We would like to

thank Sasha Rubin for suggesting to study automata with oracles.

We will also consider automata reading input words w : [β, γ) →

Σ ∪ {�}, where γ is a limit ordinal and β < γ. In this case we will speak

of a [β, γ)-automaton.

Example 2. Consider the following (n+ 1)-state ωn-automaton. We go

into state 0 at every successor. We go into state m+ 1 at a limit λ < ωn

if the maximal state appearing unboundedly often before λ is m.

This automaton detects the limit type of the current step, in the sense

that the state in any step of the form ωnkn+ωn−1kn−1 + . . .+ωmkm with

km 6= 0 is exactly m < n. This can be used to convert any ωn-automaton

into an ωn-automaton recognizing the same words, whose state records

the limit type of the current step.

Suppose γ is a limit ordinal and p : γ → Ξ ∪{�} is a parameter. A γ-

p-automatic presentation of a relational structure M in a finite language

is a structure N ∼= M whose domain consists of γ-words together with

γ-automata for the domain and each relation in N accepting exactly the

words in the domain or the respective relation of N with oracle p. A

γ-word is finite if all but finitely many of its letters are �.

Definition 3. Suppose γ is a limit ordinal and p : γ → Ξ ∪ {�} is a

parameter. A structure is finite word γ-p-automatic, or γ-p-automatic for

short, if it is has an γ-p-automatic presentation whose domain consists of

finite γ-words. We omit p if p = �γ .

This is a straightforward generalization of automatic structures (see [6]).

We will also consider automatic presentations with (finite) input words



w : [β, γ)→ Σ∪{�} and a parameter p : γ → Σ∪{�}. A structure defined

by this process is called [β, γ)-p-automatic. Note that if necessary, we can

mark the end of every finite string in the domain of a presentation by

attaching an extra symbol, and thus obtain another α-automatic presen-

tation of the same structure. The finite word ω-automatic structures are

exactly the automatic structures, i.e. structures with a presentation by

finite automata which halt at the end of the finite input word.

Note that some decidability properties of automatic structures have

analogous proofs in our setting. A proof of the decidability of the emp-

tyness problem for automata on countable scattered linear orderings can

be found in [3].

Comparison of the current input letter with the limit type yields an

ωn-automatic presentation of the following set.

Example 4. Consider the set of finite ωn-words with the letter m or �

at each place ωn−1nn−1 + ωn−2nn−2 + . . .+ ωmnm with nm 6= 0.

A natural question is: what is the supremum of ordinals β so that (β,<) is

α-automatic? Delhommé [5] proved that the supremum of the automatic

ordinals is ωω. We first conjectured that the supremum of the α-automatic

ordinals is ωα, however this is false for any ε with ωε = ε. Since (α,<)

is α-automatic and any finite product of α-automatic structures is again

α-automatic, the supremum is at least αω.

Example 5. Suppose γ is a limit ordinal and p, q : γ → ω are partial

functions with finite domain. Let p <∗ q if max(dom(p) < max(dom(q)),

or max(dom(p) = max(dom(q)) and there is β ≤ max(dom(p) with

p(β) < q(β) and p(α) = q(α) for all α < β.



Here we define � < α for all α ∈ Ord. This is an example of a wellordering

of type ωγ . We can represent it as a ω · γ-automatic structure by repre-

senting each p(α) 6= � by the ω-word 0p(α)1�ω and each p(α) = � by the

ω-word �ω.

Consider the simplest case for an upper bound: proving that ωω
2

is not

ω2-automatic. In the ω-automatic case [5,6], the domain of the structure

is split into finitely many pieces, parametrized by words of a fixed length.

Since in this setting the words have infinite length, the domain is split

into infinitely many pieces and the argument breaks down. However, there

are only finitely many possibilities, or types, in which two pieces can be

arranged relative to each other. This leads to a product of structures

discussed in the next section.

2 Finite-type products

Let us consider a product of arbitrary structures which naturally occurs

in γ-automatic representations. For a partial function f : A × B → C

and (a, b) ∈ dom(f), let fa(b) = f b(a) = f(a, b). Let p1(D) and p2(D)

denote the projections of a set D ⊆ A×B to its coordinates. We consider

relational structures in a finite signature τ . If A,C are τ -structures and f :

A→ C is a partial function, we define tp(f, g) as the isomorphism type of

the two-sorted structure (A, range(f)∪range(g), f, g, r), where r denotes

the family of the restrictions of the relations of C to range(f)∪ range(g)

together with the relations of A and a constant for each element of A.

Definition 6. Suppose A,B,C are τ -structures. A partial isomorphism

f between τ -structures is an isomorphism f : dom(f) → range(f). A

partial function f : A × B → C has finite type if fa : B → C and



f b : A → C are partial isomorphisms3 for all a ∈ p1(dom(f)) and b ∈

p2(dom(f)) and the sets

Tp1(f) = {tp(fa, fa′) : a, a′ ∈ p1(dom(f))},

Tp2(f) = {tp(f b, f b′) : b, b′ ∈ p2(dom(f))}

are finite.4

Lemma 7. Suppose f : A× B → C is a finite-type partial function and

A′ ⊆ A, B′ ⊆ B. Then f � A′ ×B′ has finite type.

Proof. Since tp(fa, fa′) uniquely determines tp(fa � B′, fa′ � B′) for all

a, a′ ∈ p1(dom(f)), |Tp1(f � A′ ×B′)| ≤ |Tp1(f)|.

Definition 8. Suppose E,F are finite sets of pairwise disjoint τ -structures

and C is a τ -structure. A finite-type partial function f : ∪E × ∪F → C

is faithful with respect to E,F if dom(fa) ∈ F and dom(f b) ∈ E for all

a ∈ ∪E, b ∈ ∪F .

Definition 9. A τ -structure C is a finite-type product of τ -structures

A and B if there is a finite-type partial function of A × B onto C. A

τ -structure C is a faithful finite-type product of finite sets E,F of τ -

structures if there is a faithful finite-type partial function of ∪E × ∪F

onto C.

3 Except for the faithful maps defined below, partial isomorphisms could be replaced

by partial homomorphisms for the purpose of this paper.
4 Please note that the corresponding [10, Definition 11] is incorrect, since the condition

that Tp1 is finite is missing.



The finite-type product is a refinement of the box-augmentation of

[5]. The commutative product of ordinals5 (see [8]) is a special case of the

finite-type product.

Example 10. [10, Lemma 9] For α, β ∈ Ord, α⊗β is the maximal order

type of finite-type products of (α,<) and (β,<).

We will decompose a γ-automatic structure as a finite-type product

of structures, similar to [5, Proposition 1.2]. Let #v denote the length of

a tuple v.

Proposition 11. Suppose γ is a limit ordinal and A is a γ-p-automatic

structure. Then for every formula ϕ(x,y) which is a boolean combination

of atomic formulas, there is some m ∈ ω such that for every α < γ, there

is a set E of [α, γ)-p-automatic structures with |E| ≤ m satisfying the

property:

If b0, ..., bn ∈ A#y with n ∈ ω and |(bi)j | ≤ α < γ for all i ≤ n and

j < #y, then for all i ≤ n the reduct of A to Abi
ϕ := {a ∈ A : A � ϕ(a, bi)}

is a disjoint union of an α-p-automatic structure and a faithful finite-type

product of E with a finite set of α-p-automatic structures.

Proof. The words of length below α in A form an α-p-automatic structure.

Consider an automaton for deciding ϕ(x,y). For each word |v| of length α,

we record the states s(v) of all automata on inputs tuples in {v}∪{(bi)j :

5 Recall that for α = Σiω
αi and β = Σjω

βj in Cantor normal form, the commutative

sum α ⊕ β is defined as the ordinal sum of all ωαi and ωβj arranged in decreasing

order. The commutative product α ⊗ β is defined as the commutative sum of all

ωαi⊕βj . Note that the commutative sum and product are strictly increasing in both

arguments.



i ≤ n, j < #y}. Let m be the number of possible combinations of these

states. Let Av = {w : vw ∈ A}. The isomorphism type of Av depends

only on s(v), since vw 7→ v′w is an isomorphism between Av and Av′ if

s(v) = s(v′). Let E contain one Av for each isomorphism type. Similarly,

the isomorphism type of Bw = {v : |v| = α, vw ∈ A} depends only on the

set of states at α with a transition to an accepting state at |vw|. Let F

contain one Bw for each isomorphism type. Each Av is [α, γ)-p-automatic,

Bw is α-p-automatic, and the set of words in A of length at least α is a

faithful finite-type product of E and F .

Corollary 1. If in the same situation p = �γ and γ is additively closed,

then there is a finite set E of γ-automatic structures such that for any

b ∈ A<ω, the reduct of A to Ab
ϕ := {a ∈ A : A � ϕ(a, b)} is the disjoint

union of a < γ-automatic structure and a faithful finite-type product of

E with a < γ-automatic structure.

Proof. If p = �γ and γ is additively closed, then the set E in the previ-

ous proof only depends on the states of the automata after reading the

corresponding words of length |(bi)j |.

3 Applications

We will use the finite-type product to bound the ranks of γ-automatic

linear orders following [7]. The linear orders with no suborder isomorphic

to (Q, <) are called scattered. For any linear order L, the finite condensa-

tion function cFC forms a quotient of L by identifying elements with only

finitely many elements in between. Let cαFC be the αth iterate of cFC .

Definition 12. The rank rk(L) is the least α so that cαFC(L) does not

contain a convex suborder isomorphic to ω or the reversed order ω∗.



Note that crk(L)+1
FC (L) = c

rk(L)+2
FC (L). If L is a linear order and (Li :

i ∈ L) is a family of linear orders, the L-sum of (Li : i ∈ L) is defined as

the lexicographic order on pairs (i, j) where i ∈ L and j ∈ Li. It is easy

to see that for any scattered linear order L, rk(L) = 0 if L is finite, and

rk(L) ≤ α if L is a Z ·n-sum of linear orders of rank below α for some n.

Lemma 13. Suppose A is a scattered linear order and E is a finite par-

tition of A with rk(B) ≤ α for all B ∈ E. Then rk(A) ≤ α.

Proof. This follows by induction on α.

Lemma 14. Suppose C is a scattered linear order and C is a finite-type

product of A and B. Then rk(C) ≤ rk(A)⊕ rk(B).

Proof. Let f be a finite-type partial function of A×B onto C. There are

finite partitions of A and B into Z-sums of linear orders of smaller rank.

We further partition these Z-sums by the finite-type property, so that on

each piece for all b 6= b′ either

(i) range(f b) and range(f b
′
) are cofinal and coinitial, i.e. sup(range(f b)) =

sup(range(f b
′
)) and inf(range(f b)) = inf(range(f b

′
)).

(ii) range(f b) and range(f b
′
) do not overlap, i.e. range(f b) < range(f b

′
)

or range(f b) > range(f b
′
) pointwise, or

Moreover, the partitions can be refined so that the restrictions of fa and

f b to each piece are total by Lemma 7. It suffices to show rk(f(D×E) ≤

rk(D)⊕ rk(E) for all pieces D ⊆ A, E ⊆ B by Lemma 13.

If case (i) occurs for all b, b′ ∈ E, then for all c < c′ in f(D×E), there

is an interval [d, d′] ⊆ D such that [c, c′] is a subset of a finite-type product

of [d, d′] with E. Thus rk([c, c′]) ≤ rk([d, d′]) ⊕ rk(E) < rk(D) ⊕ rk(E)

by the inductive hypothesis and hence rk(f(D × E)) ≤ rk(D)⊕ rk(E).



If case (ii) occurs for some b, b′ ∈ E, let us partition f(D × E) into

three intervals C0 < C1 < C2 such that for all b ∈ E, range(f b) ⊆ Ci for

some i ≤ 2. Note that we may assume that C0, C2 6= ∅. Let us look at

intervals [c, c′] ⊆ Ci for each i ≤ 2. For all c < c′ in C1, there is [e, e′] ⊆ E

such that [c, c′] is a subset of a finite-type product of D with [e, e′]. If

there is a least inf(range(f b)), we may choose C0 so that inf(range(f b))

and sup(range(f b)) do not depend on b, for b with range(f b) ⊆ C0. We

can then argue as in case (i). If there is no least inf(range(f b)), then

for all c < c′ in C0, there is [e, e′] ⊆ E such that [c, c′] is a subset of

a finite-type product of D with [e, e′]. The argument for c < c′ in C2 is

analogous. In each case rk(Ci) ≤ rk(D)⊕rk(E) and hence rk(f(D×E)) ≤

rk(D)⊕ rk(E).

This can be used to determine the supremum of ranks of α-automatic

scattered linear orders. Note that it is false for arbitrary products.

Proposition 15. Suppose α = ω · β = ωγ and p : α → Ξ. Then β · ω is

the supremum of ranks of α-p-automatic linear orders.

Proof. Suppose L is a linear order of rank β ·ω with an α-p-automatic pre-

sentation. Since L is a dense sum of scattered linear orders, it is sufficient

to prove that the ranks of scattered intervals are bounded below β · ω.

Suppose [un, vn] is an interval with rank β ·n for each n ∈ ω. Let ϕ(x, u, v)

be the formula u ≤ x ≤ v. There are m ∈ ω, α′ with |un|, |vn| ≤ α′ < α

for each n < m+ 1, and E for α′ with |E| ≤ m as in Proposition 11. All

α′-p-automatic linear orders have ranks below β by the inductive hypoth-

esis. Each [un, vn] is a union of a scattered linear order with rank below β

and a faithful finite-type product of E with a scattered linear order with



rank below β by Proposition 11. Then rk([un, vn]) can take at most m

different values of the form β · k by Lemma 14.

We directly obtain

Corollary 2. Suppose α = ω · β = ωγ and p : α → Ξ. Then ωβ·ω is the

supremum of the α-p-automatic ordinals. Hence for n < ω ≤ γ,

(a) ωω
n

is the supremum of the ωn-automatic ordinals, and

(b) ωω
γ+1

is the supremum of the ωγ-automatic ordinals.

Proof. This follows from Example 5 and Proposition 15.

Is every linear order (partial order) γ-p-automatic for some ordinal γ and

some parameter p?

4 Conclusion

We extended the methods from [5,9,10] to prove nonautomaticity. It has to

be seen if finite-type products occur in tree automatic structures. More-

over, we do not yet know if the results are applicable to other struc-

tures, for example to compute bounds for the ranks of α-p-automatic

well-founded partial orders.
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